根是什么意思(在数学中)以及实数根是什么意思在数学中
温馨提示:这篇文章已超过716天没有更新,请注意相关的内容是否还可用!
本篇文章给大家谈谈根是什么意思(在数学中),以及实数根是什么意思在数学中对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、根在数学里的定义是什么?
- 2、数学中的根是什么意思
- 3、数学中的“根”是什么意思呢?
- 4、数学中的根是什么意思?
- 5、根是什么意思数学
- 6、数学中的“根”是什么意思?
根在数学里的定义是什么?
方程的根
方程的根是:定义在一元方程中的使方程左、右两边的值相等的未知数的取值。
方程的根区别与方程的解:在多元方程中只定义了方程的解,未定义方程的根。
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0
方程的根:x1=12,x2=-2,
虽然x=-2符合方程的根的条件,但由于,考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个方程的解了,只能说是方程的根。
数学中的根是什么意思
所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
扩展资料
分类:
1、重根
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。
虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
2、无根
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
3、增根
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
4、不存在根
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
参考资料来源:百度百科-根 (数学代数学中的术语)
数学中的“根”是什么意思呢?
数学中的“根”是平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。同时,根也指未知方程两边的解。
1、算术平方根
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
2、二次方根
若一个数x的平方等于a,即=a,那么这个数x就叫做a的平方根(square root,也叫做二次方根),通俗的说,就是一个数乘以它的本身,等于另一个数,原来的那个数就是乘完的那个数的平方根。
扩展资料:
相关的还有:
1、增根
解分式方程、无理方程、对数方程时,需化为整式方程,有时会产生增根——使原方程无意义的未知数取值,此时该值便不是原方程的解。
2、不存在根
对于多元方程,方程的解不能说成是方程的根。这时解与根是有区别的。因为多元方程是不存在根的概念的。
数学中的根是什么意思?
你好,很高兴为你解答:
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。同时,根也指未知方程两边的解
算术平方根
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
二次方根
若一个数x的平方等于a,即=a,那么这个数x就叫做a的平方根(square root,也叫做二次方根),通俗的说,就是一个数乘以它的本身,等于另一个数,原来的那个数就是乘完的那个数的平方根。
举例
1)6×6=36,±6就是36的平方根
2)5×5=25,±5就是25的平方根
也就是说√36=±6,√25=±5
根是什么意思数学
根(数学代数学中的术语)。所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。例:9的平方根是±3注:有时我们说的平方根指算术平方根。
数学中的“根”是什么意思?
方程的解
例如:根为1,就是解为1。
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程必须检验.为了简便,通常把求得的根代入变形时所乘的整式(最简公分母),看它的值是否为0,使这个整式为0的根是原方程的增根,必须舍去.